Flash memory is a form of non-volatile computer memory that can be electrically erased and reprogrammed. Unlike EEPROM, it is erased and programmed in blocks consisting of multiple locations (in early flash the entire chip had to be erased at once). Flash memory costs far less than EEPROM and therefore has become the dominant technology wherever a significant amount of non-volatile, solid-state storage is needed. Examples of applications include digital audio players, digital cameras and mobile phones. Flash memory is also used in USB flash drives (thumb drives), which are used for general storage and transfer of data between computers. It has also gained some popularity in the gaming market, where it is often used instead of EEPROMs for game save data.
Flash memory is non-volatile, which means that it does not need power to maintain the information stored in the chip. In addition, flash memory offers fast read access times (though not as fast as volatile DRAM memory used for main memory in PCs) and better shock resistance than hard disks. These characteristics explain the popularity of flash memory for applications such as storage on battery-powered devices. Another allure of flash memory is that it is nearly indestructible by physical means, able to withstand intense pressure and boiling water1.
Flash memory stores information in an array of floating gate transistors, called "cells", each of which traditionally stores one bit of information. Newer flash memory devices, sometimes referred to as multi-level cell devices, can store more than 1 bit per cell, by varying the number of electrons placed on the floating gate of a cell.
In NOR flash, each cell looks similar to a standard MOSFET, except that it has two gates instead of just one. One gate is the control gate (CG) like in other MOS transistors, but the second is a floating gate (FG) that is insulated all around by an oxide layer. The FG is between the CG and the substrate. Because the FG is isolated by its insulating oxide layer, any electrons placed on it get trapped there and thus store the information. When electrons are on the FG, they modify (partially cancel out) the electric field coming from the CG, which modifies the threshold voltage (Vt) of the cell. Thus, when the cell is "read" by placing a specific voltage on the CG, electrical current will either flow or not flow, depending on the Vt of the cell, which is controlled by the number of electrons on the FG. This presence or absence of current is sensed and translated into 1's and 0's, reproducing the stored data. In a multi-level cell device, which stores more than 1 bit of information per cell, the amount of current flow will be sensed, rather than simply detecting presence or absence of current, in order to determine the number of electrons stored on the FG.
A NOR flash cell is programmed (set to a specified data value) by starting up electrons flowing from the source to the drain, then a large voltage placed on the CG provides a strong enough electric field to suck them up onto the FG, a process called hot-electron injection. To erase (reset to all 1's, in preparation for reprogramming) a NOR flash cell, a large voltage differential is placed between the CG and source, which pulls the electrons off through quantum tunneling. In single-voltage devices (virtually all chips available today), this high voltage is generated by an on-chip charge pump. Most modern NOR flash memory components are divided into erase segments, usually called either blocks or sectors. All of the memory cells in a block must be erased at the same time. NOR programming, however, can generally be performed one byte or word at a time.
NAND Flash uses tunnel injection for writing and tunnel release for erasing. NAND flash memory forms the core of the removable USB interface storage devices known as USB flash drives.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment